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ABSTRACT 

Fog computing is a well-known computing paradigm that uses fog environments to deliver 

computation and storage services, effectively managing decentralised resources. Internets of 

Things (IoT) applications choose fog computing nodes to meet end-user needs. Fog computing is 

a notion that lies somewhere between IoT devices and the cloud paradigm, with the purpose of 

lowering job scheduling and load balancing latency. Load balancing is what determines the 

effectiveness of resource allocation and management solutions. Various solutions have been 

proposed to resolve issues about cloud load balancing. Using population-based methods, on the 

other hand, did not improve load balancing efficiency or resource use. Multi objective chaotic salp 

swarm resource optimised shift-invariant deep convolutive load balancing (MCSSROSIDCLB) is 

a new technique for effective load balancing with a short makes pan. The MCSSROSIDCLB 

approach uses numerous processing layers to achieve correct results, including input, more than 

one hidden layer, and output layer. The MCSSROSIDCLB technique connects user-requested 

tasks to Fog nodes according to resource availability. The input layer collects the number of tasks 

before passing it on to the hidden layer. The load balancer evaluates fog node resource availability 

by taking end-user requests. The load balancer finds the resource-optimized fog node based on 

CPU, memory, and bandwidth in the second hidden layer by using Multi objective chaotic salp 

swarm optimization. Finally, the load balancer distributes incoming workloads to the resource-

optimized fog node in the third hidden layer. At the output layer, this technique allows for more 

resource-optimized load balancing. Experiments on characteristics including load balancing 

efficiency, make span, and memory consumption are carried out for a variety of user tasks. The 
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observed data and discussion reveal that the MCSSROSIDCLB technique improves load-

balancing efficiency and reduces make span and memory utilisation when compared to state-of-

the-art alternatives. 

 

Keywords: Fog computing, load balancing, resource allocation, shift-invariant convolutive deep 

learning, Mult iobjective chaotic salp swarm optimization 

 

1. INTRODUCTION  

The Internet of Things (IoT) devices benefit from a fog computing network with well-organized 

fog nodes (FNs) at the network's edge, which enables higher communication performance. Data 

processing using Fog computing reduces data transfer latency and latency needs significantly. 

Many real-time applications, such as healthcare, industrial systems, and intelligent traffic signs, 

rely on fog computing. Fog, on the other hand, is a potentially promising computing model that 

still requires load balancing standardisation. In fog computing, load balancing is a process that 

evenly distributes many workloads among resources to improve performance. There have been 

several meta-heuristic load balancing techniques created. However, resource-optimized load 

balancing is a difficult problem to solve. 

To handle the complete fog nodes and choose the best suited node for the current job 

assignment, [1] presented a particle swarm optimization-based Enhanced Dynamic Resource 

Allocation Method (EDRAM). Fog node computing, on the other hand, failed to apply an efficient 

load-balancing algorithm for real-time applications in order to reduce reaction time. [2] developed 

the Load Balancing and Optimization Strategy (LBOS), which uses dynamic resource allocation 

based on reinforcement learning and a genetic algorithm. LBOS was a useful tool for determining 

resource consumption and ensuring continuous operation with a shorter make span. The efficiency 

of load balancing, on the other hand, did not improve. [3] explored various load balancing 

strategies, but no performance study of various metrics was done. [4] created a novel Effective 

Load Balancing Strategy (ELBS) for fog computing that is applicable for a variety of real-time 

applications. The designed technique, on the other hand, proved ineffective in reducing the 

resource utilisation of the multiple task scheduling. [5] presented a virtual machine management 

strategy for assigning various service requests to active fog nodes chosen using a genetic 

algorithm. However, when it came to picking the active fog nodes, it failed to take into account 

the different objective functions. [6] proposed two nature-inspired metaheuristic algorithms, ACO 

and PSO, to efficiently conduct load balancing over fog nodes. Although the designed approach 

reduces reaction time considerations, load balancing efficiency was not enhanced. [7] developed 

the multi-objective Workflow Offloading (MOWO) technique for workflow scheduling and job 

offloading with the shortest reaction time. However, the MOWO approach's efficiency did not 

improve. For allocating fog and cloud resources, the Energy Make span Multi-Objective 

Optimization approach was created in [8]. In fog–cloud paradigms, however, it failed to investigate 

meta-heuristics for solving the multi-objective optimization problem. [9] proposed a prospective 

fog node-based energy-efficient resource allocation (CF-EE) algorithm. In fog computing 
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networks, however, the dynamic positions of IoT devices were not taken into account. [10] 

proposed an Opposition-based Chaotic Whale Optimization Algorithm (Oppo CWOA) to improve 

task scheduling performance. However, the suggested algorithm did not take into account multi-

objective optimization. 

 

1.1 Major contributions of the paper  

A novel MCSSROSIDCLB approach is created with the following contribution to tackle the 

existing issues: 

The MCSSROSIDCLB technique is based on Multi objective chaotic salp swarm 

optimization applied to a shift-invariant deep convolutional neural learning to increase load 

balancing efficiency in fog computing. 

The load balancer examines the fog node's hidden layer resource availability, such as CPU, 

bandwidth, and memory. The load balancer uses the Multi objective chaotic salp swarm 

optimization to a deep learning model to locate the resource-optimized fog node based on the 

highest resource availability, as determined by the study. 

The load balancer then sends the tasks to the fog nodes that are resource-optimized. This 

improves efficiency and reduces the time it takes to make a decision as well as the amount of 

memory used. 

 

Finally, an exhaustive experimental evaluation using multiple performance indicators is 

carried out to demonstrate the superiority of the proposed MCSSROSIDCLB technique over 

traditional load balancing techniques. 

 

1.2 Paper organisation 

The remainder of this work is divided into the following sections. The linked work in Section 2 

provides some existing studies in the area of fog computing load balancing. The suggested 

MCSSROSIDCLB approach is described in Section 3 with a clear architecture diagram. The 

experimental is described in Section 4 along with the dataset description. The performance results 

and comparison of the suggested technique and the standard load balancing technique are given in 

section 5. The conclusion is found in Section 6. 

 

2. WORKS IN CONNECTION 

[11] proposed an improved elitism-based genetic algorithm (IEGA) for job scheduling. The 

designed algorithm, however, was unable to handle the large-scale challenge. [12] created a 

technique for resource allocation and management (TRAM) to ensure resource use. However, the 

proposed strategy was unable to extend various hyper-heuristic and deep learning-based resource 

scheduling algorithms. 

 

[13] proposed two distributed load balancing methods for resource management. However, 

there was no consistent performance in terms of low response time and low loss rate. In [14], a 
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new optimization technique was used to introduce cooperative three-layer fog-cloud computing. 

However, it was unable to implement large-scale real-time applications with minimal latency. 

 

In [15], an improved firework algorithm (I-FA) for job scheduling was introduced. The 

suggested approach, however, was unable to reduce the task processing time. To balance the load 

of fog, [16] presented an Improved Particle Swarm Optimization with Levy Walk (IPSOLW). 

Despite the fact that the model reduces response and processing times, load balancing efficiency 

has not increased. [17] presented an energy-aware load balancing technique for low-cost scientific 

process scheduling. However, the nature-inspired load balancing alternatives were not 

implemented. 

 

Load balancing is a term used to describe the process of balancing In [18], a technique for 

tackling task mapping with a shorter average reaction time was given. To increase load balancing 

efficiency, however, resource-aware scheduling was not used. To reduce latency and network use, 

a fog-based health monitoring system structural design was introduced in [19]. However, it was 

unable to increase the resource-optimized load balancing efficiency using the metaheuristic 

technique. When assigning requests, the Load Balanced Service Scheduling Approach (LBSSA) 

was introduced in [20]for load balancing amongst the resources. However, the strategy failed to 

adequately balance the workload while allocating resources efficiently. 

 

3. METHODOLOGY 

Fog computing has the potential to be a wonderful and widely used computing paradigm for a 

variety of IoT (Internet of Things) applications. The fog node has been widely used to analyse data 

collected from IoT edge devices in a fog computing environment. Fog computing's key uses are 

reducing latency and increasing resource utilisation for end-user queries coming from IoT devices. 

The more IoT devices there are, the more end-user demands there are and the more resources are 

used. Fog computing has a number of advantages, but it also has a number of drawbacks, such as 

resource optimal load balancing, which is a difficult problem to solve in a fog computing 

environment. Load balancing is a technique for enhancing throughput while reducing response 

time by optimising resource utilisation. As a result, an efficient algorithm is necessary to handle 

end-user requests in the shortest time possible. A unique MCSSROSIDCLB technique for 

distributed load balancing in a fog computing environment is introduced based on the motivation. 
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Figure 1 architecture of proposed MCSSROSIDCLB technique 

 

 The suggested MCSSROSIDCLB technique to schedule numerous end-user tasks (i.e. 

services) in the Fog computing network is depicted in Figure 1. Healthcare, industrial systems, 

smart city, smart transportation, and other real-time applications will be supported by the fog 

computing network. Multiple end users communicate their tasks to a fog server in fog computing. 

The load balancer in the fog server examines the end-user-requested tasks after receiving user 

requests. Following that, the load balancer locates the server's resource-optimized fog node for job 

scheduling. The technique's steps are outlined in the following sections. 

3.1 Fog Computing System Network 

Fog computing is better suited to IoT applications that include many fog services. All data 

extraction, data transmission, and service execution events from IoT applications are covered by 

fog services. 

Let us consider the fog computing services (i.e task) requested by the IoT applications are 

denoted as T =  {T1 , T2, . . . , Tn}, where n is the number of tasks generated by the IoT applications 

and the number of fog computing nodes in the fog server are denoted by   F =  {F1 , F2, . . . , Fm} . 

The load balancer at each fog node schedules the end-user tasks to balance the workloads. For 

each fog computing node in the fog server, their resource capacities are measured including CPU, 
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memory, and bandwidth. By applying the binary variable, find resource-optimized fog computing 

nodes to assign the tasks.  

 

Z  = {
1;         if argmax cpu (Fi), Bw (Fi),M (Fi)

0;                                                             otherwise 
(1) 

 

In (1), Z is a binary variable that determines whether user requests are routed to fog server 

resource-optimized processing nodes. The request is assigned to the resource optimal node if the 

variable function returns '1'. Otherwise, '0' is returned. 

To accomplish load balancing and resource utilisation in fog computing, the proposed 

MCSSROSIDCLB technique employs a shift-invariant convolutive deep learning technique. The 

shift-invariant convolutive deep learning architecture is made up of a series of processing layers, 

including input, hidden, and output layers. The neurons in one layer are totally coupled to the 

neurons in another layer, forming a network. The processed input from the previous layer is passed 

on to the next layer. 

 
Figure 2 formation of the shift-invariant convolutive deep learning  

 

The creation of a shift-invariant convolutive deep learning framework is shown in Figure 

2. The convolutive deep learning system's shift-invariant system is shown below. 

zt = f [i(t)]  (2) 

Where, zt signifies the deep neural network's time-dependent output function, i(t) denotes 

the time-dependent input function, and f denotes the transfer function used to transfer the input 

from one layer to the next. The neuron's activity at the input layer is expressed as follows: 

δ(t) = ∑ ii(t) ∗ β0
m
i=1 + α  (3) 

 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

3851                                                                http://www.webology.org 
 

Where,  ii(t) specifies a neuron's activity at the input layer, β0 denotes regulating weights, 

and means a bias that is stored as '1'. The received data is then transferred to the first hidden layer, 

which performs resource estimate. 

The input layer considers the number of tasks T =  {T1 , T2, . . . , Tn}  as input. . In the first 

hidden layer, the load balancer assesses the fog nodes' resource availability, such as CPU,  M(Fi), 

Bw(Fi ) . The fog nodes' CPU time is computed as follows: 

cpu (Fi) = [ρcpu t − ρcpu c]   (4) 

Where, cpu (Fi)denotes CPU time available, ρcpu t))indicates total time ρcpu cc]  

represents utilised time to complete the task. 

The bandwidth availability of fog nodes is calculated as given below,   

Bw (Fi) =  [ωBw (t) −ωBw (c)] (5)  

 Where,  Bw (Fi) implies bandwidth availability, ωBw (t) means total band width,, ωBw (c) 

denotes bandwidth consumption. The availability of memory is another important resource that 

aids in determining the amount of storage space required to complete the tasks. As a result, memory 

availability is determined as follows: 

 M (Fi) = [ φM (t) − φM (c)] (6) 

Where, M (Fi) represents the memory availability of the fog node,  φM (t)symbolizes a total 

memory space of fog node and φM (c)denotes a consumed memory space of the fog node.  

The estimated resources are transferred to a second hidden layer, where resource efficient 

nodes for assigning the provided input tasks are calculated. A multi objective chaotic salp swarm 

optimization algorithm is used to find the best node. 

The multi objective chaotic salp swarm optimization algorithm is a population-based algorithm 

that starts by randomly initialising a predetermined number of individuals, such as the population 

of fog nodesF 1,F 2,...,F n. In the swarm of the salps optimizations, there are two categories of 

people: leaders and followers. The leader is the first salp in the chain, directing the movement of 

the followers. Multiple resources, such as CPU, memory, and bandwidth, are represented by the 

Multi objective function in this case. Set the population of fog nodes F 1, F 2,...,F n to zero. 

Multiple objective functions such as CPU availability, memory availability, and bandwidth 

availability are used to determine the fitness of each node in the server. The fitness level is 

determined as follows: 

ff = arg ma x  [cpu (Fi), Bw (Fi),M (Fi)]                  (7) 

Where arg max signifies an argument of a maximum function to calculate the fog node's maximum 

resource availability, and ff denotes fitness. The salp position p i (L) is determined at random. 

pi( L) = R (N, D) ∗ |Ub − Lb| + Lb                 (8) 

Where p i (L) signifies a salp location, R denotes a random, N denotes the salp's population 

size, U b means the search space's upper bound, and L b denotes the search space's lower bound. 

Then, using the Gaussian chaotic map function, the leader position is updated. 
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pi+1( L) =

{
 

 FSi + b1 (exp (−
1

2
 ∗ (

‖Ub−Lb‖

σ
)
2

) b2 + Lb) , b3  ≥ 0.5

Fsi − b1 (exp (−
1

2
 ∗ (

‖Ub−Lb‖

σ
)
2

)) b2 + Lb), b3 < 0.5
             (9) 

Where p (i+1) (L) represents an updated location, Fs i represents a food source position, 

and U b and L b represent an upper and lower bound. The control parameters are b 1, b 2, and b 3, 

where b 2 and b 3 are random numbers in the range [0,1], the parameter b 2 controls the step size, 

the parameter b 3 controls the direction, and the parameter b 1 is calculated using the method 

below.  

b1 = 2e−(
4Q

Max−Iter
)
2

   (10) 

Where Q stands for the current iteration and Max-Iter stands for the maximum iteration. 

As a result of being followed by, the position of the follower is updated as shown below. 

pi+1( F) = pi(F) + D   (11) 

Where, D =
1

2
 (pi−1(F) − pi(F)) is substituted for the foregoing (11) as follows: 

pi+1( F) =
1

2
(pi(F) + pi−1(F))    (12) 

Where p(i+1) (F) signifies the follower's updated position, p i (F) denotes the follower's 

current location, and p (i-1) (F) denotes the preceding salp's movement. At the second hidden layer, 

the best solution is found in this fashion. The resource optimal fog nodes, on the other hand, have 

been identified. The Multiobjective chaotic salp swarm optimization flow process is shown below. 

 



Webology (ISSN: 1735-188X) 

Volume 18, Number 6, 2021 

 

3853                                                                http://www.webology.org 
 

Figure 3 flow process of multi objective chaotic salp swarm optimization algorithm.  

 

Figure 3 depicts the flow of a multi objective chaotic salp swarm optimization algorithm for 

assigning jobs to discover resource-optimized fog nodes for effective load balancing. Using a 

binary variable, the load balancer sends incoming tasks to the appropriate fog nodes in the server 

for optimal resource usage in the third hidden layer (1). The output layer is transformed from the 

hidden layer's output. 

Q(t) = ∑ ii(t) ∗ β0
m
i=1 + β1 ∗ q(t − 1)              (13) 

From (13),Q(t)represents the output of the hidden layer at a time ‘t’,β0 denotes a weight between 

the input and hidden layer,  β1 denotes a weight of hidden layers, ii(t)represents the input, q(t −

1) denotes the previous hidden layer's output. A convolution is indicated by the operator ‘∗’ .The 

shift-invariant convolutive deep learning output is written as follows: 

Y(t) = β2 ∗ Q(t)    (14) 

 Where,  Y(t)) denotes the output, β2 denotes a regulating weight between the hidden and 

an output layer, Q(t) is the hidden layer's output. . As a result, in Fog computing, the optimization 

of dynamic load balancing with predictive resource allocation. The suggested MCSSROSIDCLB 

technique's algorithmic procedure is outlined as follows: 

 

Algorithm 1:  Multi objective choatic salp swarm resource optimized shift invariant deep 

convolutive load balancing 

Input: Number of user tasksT1, T2, T3, … . Tn , fog nodes F1 , F2, . . . , Fn 

Output: Improve the load balancing  efficiency  

Begin 

1. Collect a number of end-user tasksT1, T2, T3, … . Tn at input layer 

2.   Send user tasks T1, T2, T3, … . Tnto fog server  

3. The load balancer receives the tasks T1, T2, T3, … . Tn ad find fog nodes --–first hidden 

layer 

4. 𝐋𝐁 finds the resource optimized fog node   --–second hidden  layer 

\\ Apply multi objective chaotic salp swarm optimization technique  

5.    Initialize the population of fog nodes F1 , F2, . . . , Fn 

6.  for each fog node  

7.    Initialize the population of fog nodes F1 , F2, . . . , Fn 

8.  for each fog node  

9. calculate the fitness  ‘ff’ 

10. While (t <Max − Iter) 

11.             for each fog node 

12.                 If (ff(Fi) >  ff(Fj)) then  

13. Update the position of leader using pi+1(L) 

14.  else 
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15. Update the position of follower  pi+1( K) 

16.                 end if  

17. end for 

18. t= t+1 

19. end while 

20. end for 

21. Find a leader in population  

22. Obtain best optimal solution  ‘best salp’ i.e. fog node  

23. 𝐋𝐁 schedule task to optimal fog node  at the output layer  

End 

 

In a distributed fog computing environment, Algorithm 1 defines the step-by-step process of 

resource-optimized load balancing. The number of ends user-requested tasks is received by the 

input layer. The load balancer receives user-requested tasks in the first hidden layer and assesses 

the fog computing nodes in the server's resource availability. The load balancer then searches for 

resource-optimized fog nodes using a multi objective chaotic salp swarm optimization technique. 

In the search space, the number of salp swarm (fog node) populations and their placements are 

randomly initialised. Based on resource availability such as CPU, bandwidth, and memory, the 

proposed optimization technique evaluates the fitness of all fog nodes (salp swarm). When one 

individual salp's fitness exceeds that of another, the leader's position is changed. Otherwise, the 

leader's position is updated. Finally, the leader's (best salp) dimensions are updated. All of the 

preceding steps are repeated until the maximum number of iterations is reached. Finally, the load 

balancer delivers the incoming jobs to the fog node with the best resource allocation. As a result, 

the optimization method improves load balancing efficiency while lowering make span. 

 

4. EXPERIMENTAL EVALUATION  

The proposed MCSSROSIDCLB method and the existing EDRAM[1] LBOS [2] are compared 

using Java and the I Fog Sim simulator, which allows for the modelling and assessment of resource 

management and scheduling rules across edge device and cloud resources in a variety of situations. 

Fog computing is a layer that sits between the faraway cloud and the end user, and it boosts the 

network's overall performance. A Personal Cloud Datasets is collected from 

http://cloudspaces.eu/results/datasets in order to run the experiment. User interface structures, IoT 

services, resources, and network applications are all included in the I Fog Sim simulator. A number 

of user-requested edge layer jobs are delivered to the best fog nodes in an I Fog Sim simulator for 

task scheduling in a distributed fog environment. Based on resource optimization, the best fog 

nodes are chosen. There are 17 attributes (columns) and 66,245 instances in the Datasets (i.e., user-

requested tasks). The dataset's main goal is to do load and transfer tests between the edge user and 

the server. Row id, account id, file size (task size), operation time start, operation time end, time 

zone, operation id, operation type, bandwidth trace, node ip, node name, quoto start, quoto end, 

quoto total (storage capacity), capped, failed, and failure details are among the 17 attributes. Two 
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attributes, time zone and capped, are not used among the 17 properties; the remaining attributes 

are used for load balancing by allocating activities to multiple fog nods according on resource 

availability. 

 

5. PERFORMANCE ANALYSIS  

The proposed MCSSROSIDCLB approach and the existing EDRAM [1] LBOS [2] results and 

debate are detailed using various factors such as load balancing efficiency, make span, throughput, 

and reaction time. Tables and graphical representations are used to discuss the results of three 

strategies. 

5.1 Load balancing efficiency performance analysis 

The ratios of a number of end-user jobs dispersed to fog computing nodes to the total number of 

end-user tasks are used to calculate load balancing efficiency. The load balancing efficiency is 

expressed as follows: 

EffLB = [
NTD

n
] ∗ 100  (15) 

From (15),EffLB denotes a load balancing efficiency and ‘n’ denotes the number of end user 

tasks. Load balancing efficiency is measured in terms of percentage (%).   

 

Table I Load balancing efficiency 

 

Number of tasks Load balancing efficiency (%) 

MCSSROSIDCLB EDRAM LBOS 

5000 90 88 86 

10000 92 89 85 

15000 91 88 84 

20000 92 87 85 

25000 94 88 86 

30000 93 90 88 

35000 92 89 86 

40000 93 90 88 

45000 92 88 86 

50000 91 87 85 

 

 Table I shows the load balancing efficiency as a function of the number of users' requested 

tasks generated by various IoT apps, with numbers ranging from 10000 to 50000. With varied 

counts of input tasks created from the dataset, ten distinct results are seen for each technique. 

Compared to the other two current approaches, the suggested MCSSROSIDCLB delivers greater 

performance in terms of increased load balancing. Consider 1000 activities generated by an IoT 

user, 90 of which are successfully scheduled to a resource-efficient virtual machine, and the 

MCSSROSIDCLB approach is 90% efficient. Using EDRAM [1] LBOS [2,] 88 and 86 tasks are 
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accurately scheduled to resource-efficient fog nods, resulting in an efficiency of 88 and 86 percent, 

respectively. Similarly, three load balancing approaches yielded the remaining efficiency results. 

The MCSSROSIDCLB technique's observed outcomes are compared to the performance of 

existing approaches. The average is then used to compare the performance of the 

MCSSROSIDCLB methodology to other methods. The total comparison results show that the 

MCSSROSIDCLB approach improves load balancing efficiency by 4% and 7%, respectively, 

when compared to [1] and [2].    

 

 
 

Figure 5 Load balancing efficiency with varying number of tasks 

 

Figure 5 shows a graphical illustration of load balancing efficiency utilising three different 

methods: MCSSROSIDCLB, EDRAM [1], and LBOS [2.] The load balancing efficiency of the 

three different strategies is shown by three different colours of lines, blue, red, and green, 

respectively, in the graphical depiction. The number of users is entered on the 'x' axis, while 

efficiency is measured on the 'y' axis, as seen in the graphical display. The plot shows that the 

MCSSROSIDCLB approach outperforms the others in terms of efficiency gains. This is because 

the resource-optimized fog nodes were identified using Multi objective chaotic salp swarm 

optimization in a shift-invariant deep convolutional neural learning. The load balancer routes 

incoming jobs to a fog node with the most available resources. This method improves the 

efficiency of fog computing load balancing. 

5.1 Performance analysis of Makes pan 

It is calculated as the time it takes to assign jobs to fog nodes that are resource-optimized. 

The formula for the Makes pan is as follows: 

   Ms = n ∗  t [SOT]    (16) 

Where Ms represents a makes pan, n represents the number of end-user tasks, and t 

represents the time for scheduling one task ('SOT'). The makes pan is expressed in milliseconds 

(ms).  

Table II Makes pan 
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Number of tasks Makes pan (ms) 

MCSSROSIDCLB EDRAM LBOS 

5000 23 25 30 

10000 28 32 35 

15000 33 38 42 

20000 38 42 46 

25000 43 45 50 

30000 45 48 53 

35000 49 53 56 

40000 52 56 60 

45000 54 58 63 

50000 58 60 65 

 

Table II shows the results of makes pan's performance utilising three distinct strategies. 

With respect to a number of tasks ranging from 5000 to 50000, MCSSROSIDCLB, 

EDRAM [1] LBOS [2] were used. The results show that when compared to the other two 

ways, the performance of makes pan utilising the MCSSROSIDCLB methodology is 

significantly worse. The sample computation demonstrates this. Similarly, with varying 

numbers of input, different results are obtained for each method. For each procedure, ten 

results are observed. The MCSSROSIDCLB technique's performance is then compared to 

that of existing approaches. The performance of makes pan is significantly lowered by 8% 

when compared to [1] and by 16% when compared to [2], according to the average of ten 

comparison results. 

 

 
 

Figure 6 Makes pan with varying number of tasks 

  

Figure 6 shows the makes pan experimental result for a variety of user-requested tasks. The number 

of tasks completed in the range of 5000 to 50000 is taken into account. When demonstrated in 
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Figure 6, as the number of user tasks grows, the time consumption of all methods increases. The 

MCSSROSIDCLB method, on the other hand, reduces the performance of makes pan. This is 

because the MCSSROSIDCLB technique employs deep learning to examine the fog node's 

resource availability and pick the best fog node in the shortest amount of time for accurately 

assigning numerous tasks. The average makes pan time for task scheduling in fog is reduced as a 

result of this. 

 

5.2Performance analysis of memory consumption  

 

It is measured as the amount of memory space consumed to store the multiple tasks. The 

formula for calculating the overall memory space is expressed as given below,  

ConMem = n ∗  M (storing one task)    (17) 

 Where,ConMem denotes a memory consumption, n represents the number of tasks and 

M denotes memory consumption. The memory consumption is measured in terms of megabytes 

(MB). 

Number of tasks Memory consumption (MB) 

MCSSROSIDCLB EDRAM LBOS 

5000 28 31 35 

10000 33 36 39 

15000 36 42 45 

20000 40 44 48 

25000 45 50 55 

30000 48 54 60 

35000 53 56 63 

40000 56 60 64 

45000 61 65 70 

50000 67 70 75 
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Figure 7Memory consumption with varying number of tasks 

 

Table III and Figure 7 show the memory consumption findings for scheduling multiple jobs using 

three different techniques: MCSSROSIDCLB, EDRAM [1] and LBOS [2]. While raising the 

number of tasks for each iteration, the memory usage for all methods increases. The performance 

of memory usage utilising the MCSSROSIDCLB methodology is significantly better than the 

other two ways. In the first iteration, we'll use the 5000 tasks to calculate memory use. To begin 

with, the MCSSROSIDCLB method used 28MB of memory to schedule the 5000 tasks. 

Furthermore, EDRAM [1] and LBOS [2] consume 31MB and 35MB of memory, respectively. As 

a result, for each technique with a variable number of inputs, different results are observed. When 

comparing the three strategies, the MCSSROSIDCLB technique reduces memory consumption by 

8% when compared to [1] and by 16% when compared to [2] while distributing numerous 

workloads into the fog node. 

 

6. CONCLUSION  

In Fog computing, load balancing is the process of spreading computational jobs over a group of 

resources, reducing response time while maintaining high-quality computation. In fog computing 

settings, load balancing is critical, and it must schedule user jobs to the available fog nodes in order 

to reduce the makes pan. A unique technique called MCSSROSIDCLB is developed in this 

research to improve load balancing efficiency. For deep resource allocation and Multi objective 

chaotic salp swarm resource optimization based task scheduling in fog, the proposed 

MCSSROSIDCLB approach leverages shift-invariant deep convolution neural learning. The load 

management then uses the Multi objective chaotic salp swarm optimization technique to find the 

server's resource-optimized fog node, which improves scheduling performance over a single 

objective function. Different performance criteria, such as load balancing efficiency, makes pan, 

and memory usage, are used to evaluate the MCSSROSIDCLB technique's performance. As a 

consequence of the quantitative results and discussion, the given MCSSROSIDCLB technique 
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appears to be highly promising in terms of providing higher load balancing efficiency with less 

makes pan and memory consumption than traditional load balancing systems. 
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